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ABSTRACT

This report demonstrates the use of computer programs
to model and analyze fuel cell power systems for ship
applications which utilize hydrocarbon fuels. Programs
available include those for Molten Carbonate (MCFC),
Phosphoric Acid (PAFC), and Polymer Exchange Membrane (PEM).
The PEM system was chosen as an illustrative example because
the program for the PEM model is the most comprehensive of
the available programs. It has been recently employed
extensively in a ship impact study conducted by the
Carderock Division, Naval Surface Warfare Center (CDNSWC).

The development of a 2500kW PEM fuel cell power system
is described in detail beginning with functional input
requirements and ending with a complete physical model. The
model includes the size and weight of all major power plant
components required to produce direct current electric power
with diesel fuel. The fuel cell system weights and volumes
are compared to state—of-the—art gas turbine and diesel
engine generators. Fuel utilization curves are generated
and compared with typical equivalent engine generator
systems.

The output of each phase of development is exhibited
as the program is run. For example: the system
architecture, material balances, energy balances, detailed
heat exchanger utilization and design data, acquisition and
life cycle cost estimates, component weights and volumes,
and off-design performance (fuel rate versus per cent rated
load data). A three dimensional computer model of the
system is drawn from the generated data showing the major
components in relative positions using AutoCad®. This model
can be utilized in other AutoCad™ compatible programs to
demonstrate the spatial arrangement of components within the
ship and to estimate centers of gravity and moments.

Recommendations stemming from this study include:
creating a module for SOFC technology; and modifying the
existing modules to include bottoming cycles, optimization
for maximum water recovery, and updated heat exchanger
designs and materials,

ADMINISTRATIVE INFORMATION

This report is submitted in partial fulfillment of Milestone 1, Task 4 of the
Mechanical Power and Auxiliary System Project (RN21E42). The work herein was
sponsored by the Office of Naval Research (ONR 4524) and performed by the Fluid
Systems and Machinery Analysis Branch, Code 824, of the Power Systems Department,
Machinery Research and Development Directorate, Naval Surface Warfare Center,
Carderock Division, Annapolis Detachment. The computer programs referred to in this
report were developed by Analytic Power Corporation under NSWC Contracts
N61533-89-C-0008, N61533-90-C-0043 and N61533-91-C—~0101. The authors also
acknowledge NAVSEA O3R17 for sponsoring fuel cell studies which utilized these
programs.
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INTRODUCTION

Definitio
A fuel cell is an electrochemical device, similar to a battery, which converts

fuels such as natural gas or heating oil to electricity without combustion and
without generation of noise. Fuel cell power systems have no moving parts except for
a few pumps and blowers. Electric power generators are consist of many fuel cells
connected together to form large arrays as required to meet the power demands.

Fuel cell advantages in naval appljications

In preliminary ship power studies!, fuel cell power plants have shown
distinct advantages over conventional maritime gas turbines and diesel plants.
These advantages include higher efficiency and reduced weight and volume. In
addition to these benefits, it was also predicted that ship service power and
propulsion power installations based on a fuel cell power plant design, and
Incorporated into a Navy vessel’s design, may realize cost savings as the price of
less polluting fuels and fines levied for air pollution increase in the future.

Advantages Unjque to Fuel Cells

The minimum amount of moving components, intrinsic non-magnetic materials of
construction, and inherent high thermal efficiency combine to give the Navy three
advantages not met by any other power generating system:

® Stealth
® High Fuel Economy (lower fuel costs/longer missions)
®- Essentially Zero Pollution

Overal a

As fuel cells are electrochemical devices, not heat engines, they are not
subject to Carnot efficiency limitations, and can achieve very high efficiencies at
moderate temperatures with appropriate design. A conservatively designed fuel cell
pover plant can exceed gas turbine and diesel efficiencies by several percentage
points. An even more important benefit in efficiency is attained in the off design
case. Standard Navy practice requires a backup generator to be at idle in case of
the failure of the prime power unit. Two ship service power plants are therefore
usually run at half power. Gas turbine and diesel. engines running at half power:
lose efficiency. The efficiency of fuel cells, on the other hand, increases as
loads are reduced from full load.

The effect of off-design operation on overall thermal efficiency for various
engine generator systems using diesel fuel is compared in Figure 1. The Allison
501-K34 gas turbine, presently used as the ship service generator on many Navy ships
has a design point efficiency of roughly 33%; this drops to about 25 % at half
power. By comparison, the efficiency of a 2500 kW PEM system, the uppermost.curve
on Figure 1, is projected to be 5 percentage points higher than the intercooled
regenerative (ICR) gas turbine engine generator, and 17 percentage points higher

1 Boughers, Ward, et al., The Assessment of Fuel Cell Power Plants for-
Surface Combatants: Final Report, CARDIV-TM—(not numbered), in publication.
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than the LM2500 engine generator. The efficiency of the PEM system is very flat
over the load range.

Efficlency = (Energy of Fuel) / (Shaft Power Out)
45 -

Power Source
©-ALLISON 501-K34 +LM2500 K ICR #2500 kW PEM

15

10 T T T T T
2. .4 .6 8 1

FRACTION OF FULL LOAD

Figure 1. Comparison of the effect of load on performance.

System Weight and Volume

Initial studies indicated that fuel cells power plants by themselves can be
made lighter than comparable gas turbines or diesel plants. Further studies
indicated that in the context of the entire power system and support equipment,
these savings will be even more dramatic. Support equipment includes such things as
exhaust and inlet stacks, gearing, foundations, operating fluids and lubricants, and
fuel service system. Based on the Ship Breakdown Structure (SWBS) for an Arleigh
class vessel, the gas turbine engines themselves make up only a small part of the
total weight, volume and cost of a main propulsion or ship service power system.

-3 CARDIVNSWC~TR-82-93/47



System Cost
It is unlikely that fuel cell systems are competitive today with equivalent

engine generator systems strictly on a cost basis at the present time due to the
immature nature of the technology. Some inherent fuel cell design features,
however, indicate significant cost saving in the immediate future, given the present
direction of environmental and energy policies.

Modular design, low thermal emission, and low pollution allow fuel cell
systems to be placed in inhabited spaces and arranged to suit the space available.
This modular nature also permits great flexibility in meeting the inevitable
increasing power demands. Instead of designing a new engine or modifying an
existing engine, the fuel cell system power can be increased by simply adding
modules. It is beyond the scope of this report to estimate these cost savings, but
they should be significant.

Fuel cell systems operate on hydrogen. The source of this hydrogen is
insignificant except as it affects storage and handling. Surface naval requirements
dictate systems which can operate with diesel fuel while submersibles might use a
synthetic fuel such as methanol. 1In all cases a processor to convert the fuel to
hydrogen is an integral part of the system. This contrasts with some utilities in
the United States and Japan which use fuel cells operating with natural gas,
kerosene, coal gas, and similar fuels. The design and complexity of a fuel cell
power generating system, and, therefore, the costs, depends on the application and
the type of fuel available.

As more synthetic and renewable fuels become available and possibly mandatory
due to air quality requirements in the future, the cost effectiveness of fuel cell
pover systems aboard ships will increase dramatically because the stacks will not be
effected or require modification.

SCOPE

The Center has been extensively involved in the design and analysis of fuel
cell power systems for Naval applications and is presently investigating the impact
of various systems on ship design. Toward this end, a suit of computer aided design
programs were developed under contract from the Analytic Power Corporation?. These
programs assist engineers in the design of complete power plants based on the net
power production required. Data from these programs can be used to analyze the
effects of parameter modifications on the plant weight, size, and efficiency. The
data can also be used to produce 3-dimensional computer models of specific power
plants, within which, components may be visualized and spatially arranged for
available spaces, such as; ship engine rooms, auxiliary spaces, and an infinite
number of other arrangements useful in making ship impact assessments.

This report endeavors to demonstrate the power of the Analytic Power Corp.
computer programs in designing a broad range of fuel cell power systems. A specific
example of designing a 2500 kW PEM system, concluding with the production of a 3—
dimensional AutoCad” model is employed to illustrate the result of the process.

2 Friedhoff and Bloomfield, ANALYTIC POWER CORPORATION FINAL REPORT CO055
FUEL CELL SYSTEMS STUDIES, Contract No. N61533-91-C-0101, April 1992.
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COMPUTER PROGRAM DESCRIPTION

The following is an example of using a typical design program using the
Analytic Power Corp. modules for PEM fuel cell power systems. The source modules
include the following sub modules which are automatically concatenated during
program execution of the main module:

® DTRC7R5 .BAS Main program, fuel cell and stack design module, and sub

program manager

FC_TAP .BAS Design data storage and handling module

HXNET1 .BAS Heat/energy balance

HXNET2 .BAS Heat management architecture

HXNET3 .BAS Heat exchanger and condenser design module

ECON7 .BAS Cost estimating module

WT-VOL7 .BAS Balance of plant (reformer, shift converter, desulfurizer,
and saturators) design, and heat exchanger and condenser
weight and volume sizing

¢ DTRC7_OD.BAS Off-design performance prediction.

The modules are written in BASIC (Quick Basic 2) and are compiled to
executable form from which they are executed.

Overall Program Operation

The design of fuel cell systems utilizing an auto thermal reformer assumes the
overall fluid flow pattern shown in Figure 2. Figure 3 shows the diagram which
appears on the computer screen as the program executes. The numerals in parenthesis
represent nodes with which the computer determines the material and energy balances.

The system operation can best be comprehended by following the flow schematic
in Figure 3 while reading the description below.

Anode Operation. Fuel (node 1) is pumped to system pressure, pre-heated and
vaporized in the ATR. At the ATR inlet (node 3) fuel vapor is mixed with spent air
from the cathodes of the fuel cell stack containing unreacted oxygen. This oxygen
is used to burn some of the fuel creating heat for the thermal reforming process
which liberates hydrogen (H,) from the fuel and produces carbon dioxide (CO;) and
carbon monoxide (CO). Sulfur is converted to hydrogen sulfide (H,S) in the highly
reducing atmosphere. The hot reformate enters the heat exchanger (node 4) giving up
much of its heat to the cooler incoming air and then enters a system of zinc oxide
(Zn0) beds which adsorbs the H,S. The desulfurized gas enters the shift converter
(SHIFT) (node 25) where CO, reacts with steam producing CO, and H,. The hydrogen
rich stream passes through a selective-oxidizer (SO) where any remaining CO is
converted to CO,. The gas then enters the anode saturator (SAT) where it is
contacted with water (node 26 to 27) before entering the anode manifold of the fuel
cell stack (node 5). 1In the anode flow fields of the cells, hydrogen is electro—
chemically converted to hydrogen ions which migrate through the membrane electrolyte
to the cathode flow field. If the computer deems conditions to be favorable, excess
water may be condensed from the anode gases prior to exiting at node 6. The spent-
anode gas 1s mixed with compressed inlet air in a catalytic burner where the
remaining hydrogen is oxidized. This reaction raises the temperature of the exhaust
(node 14) for operation of the turbocharger. The exhaust is then ducted to the -
atmosphere.

Cathode Operation. Ambient air entering the turbocharger (node 7) is
compressed to the operating pressure (node 8) designated in the set up parameters.

5 CARDIVNSWC-TR~82-93/47



Figure 2.

Schematic of a typical PEM fuel cell power system using auto
thermal reforming.

To water Storage
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Figure 3. Computer generated diagram of flow schematic showing nodes used in
_system design and analysis.
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The pressurized air is saturated with water prior to entering the cathode manifold
(node 10). As air passes through the cathode flow fields in the cells, oxygen is
reacted electrochemically with hydrogen ions migrating through the membrane from the
anode, producing water. Water produced in the fuel cell reaction is removed from
the air stream in a sea-water cooled condenser (not shown on the schematic) and
retained in the water management system (node 29). The air (node 11) is heated in
the heat exchanger with gases from the ATR before entering the ATR (node 12).

Water management system. The water produced in the cells is essentially pure.
Water is circulated through the cathode saturator (node 17) where it contacts the
inlet air and then to the cooling manifold of the cell stacks. The temperature of
the water is increased as it passes through the flow fields of the cells and removes
excess heat. The heated water (node 19) then enters the anode saturator where it
saturates the hydrogen rich anode stream. Water remaining in the loop (node 20 to
16) is cooled in a ship raw water heat exchanger. This accounts for most of the
heat rejection in the system.

Operation of the Design Program,

The following gives a description of the execution of the computer programs in
the design and analysis of a fuel cell power system. Figure 4 shows an algorithm of
the overall program functions in block form to simplify explanation.

Input data. The operator begins execution by running "DTRC7R5". The first
screens contain the initial parametric data which the operator may change as
required. The following parameters are variable.

®- Net power, kW (in most modules)

Mechanical efficiency, percent ( pumps, blowers, etc.)

System pressure, Atm

Cell voltage (affects efficiency and current density)

Cell inlet temperature, deg F

Hydrogen utilization, percent

Water to carbon ratio in reformer (affects reformer efficiency)

First approximations. Average cell performance is predicted form the input
conditions applied and the polarization curve data of the system involved. The
polarization curves vary greatly with fuel cell technology. Then the stack
performance is computed and compared with the required net power. If the comparison
is not within design parameters, adjustments to the number of cells, cells per
stack, and cell active area is modified and the process reiterated.

Material and energy balance. When the stack design meets the required
parameters the program begins determination of the overall material balance. To
obtain the necessary balance the size and performance of the fuel processing
equipment is modified. When a balance is obtained, an energy balance is attempted.
To attain a correct balance the gross power is modified and the cell and stack
design is reiterated. These processes continue until both the material and energy
balances. ’

CARDIVNSWC~TR-82-93/47
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Figure 4.

Algorithm for a typical design program, DTRC7-RS.
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At this point, the following outputs are available:
® Net power

Exhaust temperature

Exhaust flow rate

Exhaust composition

Air flow rate

Sea water flow rate

Heat exchanger design. The operation of the heat exchanger design sub program
is extremely complex and well beyond the scope of this report. It is sufficient to
state that the program designs appropriate heat exchangers and arranges their
placement in the flow schematic for maximum efficiency. A diagram of the heat
exchanger system is available to the operator on demand.

Cost estimates. The cost estimation sub program is straight forward and is
very comprehensive. Cost estimates include acquisition costs, developmental costs
of various contingencies from prototype to final production units, operational
costs, and costs involved in buying (eg. cost of money, etc.), installation, and
maintenance (40-year depreciation). This sub program was written by Analytic Power
Corp. for the electric power industry applications and includes information not
particularly applicable to Navy needs. Data available and usually recorded at this
point includes:

® Stack cost

¢ Balance of plant cost

®- Life cycle cost

Weight and volume calculations. The calculation of hardware weight and volume
is straight forward and involves using data generated in the design sub programs to
determine the volume of various equipment. A table of weight factors and material
densities are used in conjunction with standard practices with regard to pressure
vessel and heat exchanger design to establish the final weight data. The following
data is available:

¢: Weight and volume of;

Stack

BOP,
Reformer
Shift converter
Desulfurization equipment
Heat exchangers
Condensers

¢ Equivalent weight and volume
Gas turbine generator set
Diesel engine generator set

Off design data. After completion of the initial design program, the
performance prediction module can be executed to obtain the performance of the:
design at various power levels. This module is essentially a modified version of-
DTRC7R5.bas where the size of hardware is fixed and the temperatures, pressures and
flow rates are allowed to vary according to the applied load. The most important
information from this module is the fuel rates at selected loads which can be used
to obtain specific fuel consumption curves.

CARDIVNSWC-TR-82-93/47




TYPICAL FUEL CELL POINT DESIGNS

Point design modules for PEM, MCFC, and PAFC fuel cell systems were developed
and updated by Analytic Power Inc. under Navy contract (see page ). Recently they
were used to produce designs and data for a ship impact study where the beneficial
assets of fuel cells could be evaluated when applied to a theoretical surface ship.
Some examples of these point design data spread sheets for PEM, PAFC, and MCFC
systems are shown in Appendices A, B, and C, respectively.

The following evample of a typical point design uses the PEM technology. PEM
technology was chosen because it represents the technology for which the most
comprehensive analytic programs have been developed at present. Software facilities
now include all the existing fuel cell technologies except solid oxide (SOFC). SOFC
development is in the early stages at this time and a viable model for both planar
and tubular technologies will be developed in the near future.

e System De C/-R

At the start of the design program the operator must supply the following
initial data:

® automatic or manual operation

¢ name of set-up file

¢ graphic displays on or off
For this example, automatic operation is proper. Manual operation allows the on-
line observation and alteration of many parameters and is best suited for initial
runs or trouble shooting if computer errors occur. The set-up files contain initial
parameters which will become the default values. It may be edited to suit a
particular set of initial conditions to speed up future data entry. Most of these
values may be reset or defaulted as the program continues. Figure 5 shows a
composite screen of initial data for a 2500 kW system.

INPUT POWEF PLANT DATA HIT <CR> TO SELECT DEFAULT VALUE
POWERPLANT SIZE, kW 2500 REFORMPR " INLET de 1200
INVERTER EFFICIERCY - 2 REFORMER EXIT de 1330
MECEANICAL EFFICIENCY - % 83 REFORM OFFSET d:}? 150
SYSTEM - ata 6 SHIFT OFFSET de 50
DATA FOR DIESEL FUEL HIGHFR HEATING VALUE = 19350
LOWER EEATING VALUE = 18300 BTU/lb AVERAGE MOLECULAR WT = 204
WATER TO CARBON RATIO 3.5 INPUT UPDATE?
Im¥ FUEL CXLL:
INPUT CELL VOLTAGEZ - volts .7  INPUT UPDATE?
INPUT ANCOE IKLET TEMPERATURE - deg F 220 INPUT UPDATE?
INPUT CATBODE INLET - deg F 220 INPUT UPDATE?
INPUT OXYGEM UTILIZATION .8  INPUT UPDATE?
INPUT BEYDROGER UTILIZATION .83 INPUT UPDATE?
INPUT CZLL TEMPERATURE 238 INPUT UPDATE?
INPUT REFORMER PRESSURE (] INPUT UPDATE?

Figure 5. Initial dasta screen display, DTRC7-RS.
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computer prior to entering the

operator’s console.

Figure 6 shows a summary of the initially assumed conditions used by the
material/energy balance routines as it appears on the

DTRC7-R4 PLANT PERFORMANCE DATA
OVERALL EFFICIENCY 37.7 2 CELL
CURRENT DENSITY 953.5 asf
POWER: CELL VOLTAGE 0.700 volts
NET 2512.1 kW OPEN CIRCUIT (dH/nF) 1.238 _ volts
GROSS 2644 .4 kW CELL AREA 3961.7 ft2
FUEL CELL 2644 .4 kW
INVERTER 0.0 kW IN 6.3E+06BTU/HR
PARASITE 132.2 kW H(7) AIR IN= 3.0E+06BTU/HR
H(1) FUEL IN= -1.7E+03BTU/HR
OIL HTR IN= 5.2E+05BTU/HR
UTILIZATIOR: COMP SHAFT IN= 2.8E+06BTU/HR
FUEL 0.850
ENERGY OUT= 6.1E+06BTU/HR
OXYGEN 0.717 H(32) GAS OUT= -1.8E+07BTU/HR
P(GROSS) OUT= 9.0E+06BTU/HR
TEMPERATURE : MAIN HX OUT= 5.0E+06BTU/HR
ANODE INLET 262.2 deg F TURB SHAFT OUT= 6.4E+06BTU/ER
CATHODE INLET 244.7 deg F MAIN COND OUT= 6.4E+06BTU/HR
CELL EXIT 261.0 deg F ATR 0.89

Figure 6. Initial conditions display screen.

After the material/energy balance is complete, it is possible to obtain a
listing of the temperatures, pressures, and composition at almost all nodes (refer
to Figure 3). The entire listing is too comprehensive to include in this report as
it produces several pages in fine print, however Figure 7 contains a truncated
sample of the node array produced while running this design program demonstration.

MICROFLO NODE ARRAY
MOLE FRACTIONS %

NODE 1 2 3 4 5 7 8 ] 10
H2 0.000 0.000 0.000 16.714 17.571 3.088 0.000 0.000 0.000 0.000
H20 0.000 0.000 40.804 26.453 34.859 41.097 0.000 0.000 0.000 22.680
CH4 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000
co 0.000 0.000 0.000 4.364 0.000 0.000 0.000 0.000 0.000 0.
co2 0.000 0.000 0.000 5.675 8.340 9.804 - 0.000 0.00 0.000 0.000
02 0.000 0.000 4.080 0.000 0.000 0.000 20.850 20.950 20.950 16.198
N2 .00 0.000 54.338 48.783 38.128 46.000 78.050 79.050 78.050 61.121
No.2 FO 100.000 100.000 0.777 0.000 0.000 0.000 0.000 .000 0.00 .000

5.8 5.821 748.940 869.70A 1040.042 884.705 797.269 797.268 282.455 665.828
T DEG F 70 70 1298 1350 262 261 70 575 575 245
P ATM 6.000 47.619 6.000 6.000 6.000 6.000 1.000 6.000 6.000 6.000
H BTU/HR -1,.606E+03-1.373E+05-2.021E+07-2.021E+07-4.64BE+07-4 725E+07 2.963E+06 5.806E+06 2.057E+06-1.213E+07
S BTU/HR P-1.333E+02-4.133E+02 3.980E+04 4.539E+04 4 .50AE+04 3,.860E+04 3,553E+04 3.645E+04 1.291E+04 2.936E+04
CP B/HR F 3.882E+02 5.686E+02 7.880E+03 7.633E+03 7.938E+03 6.861E+03 5.553E+03 5.7S1E+03 2.038E+03 4.847E+03

Figure 7.

Heat Exchanger Modules, HXNET-1B . HXNET-2B. and HXNET-3B,

The program automatically starts the heat exchanger design programs after
conclusion of the system design module DRTC7-R5. The operator has the option of
automatic or manual control. Automatic. control is preferable with the manual mode
chosen only for special conditions or trouble shooting in case of program error.

The operator can change or default the heat exchange coefficients for nine models
depending on the heat transfer technology. Most of the default coefficients are for
a standard shell and tube arrangement. The exception is_the hot gas heat exchanger
(heat exchanger #(1) in Figure 8), which is a plate type.

Sample node array of the system design module DTRC7-RS.
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During the operation of this module the energy balance is revisited and a
special routine selects and positions heat exchangers for maximum efficiency. At
the conclusion a system map similar to that shown in Figure 8 is produced showing
the position of each numbered heat exchanger relative to the nodes. The design data
for each heat exchanger is manually selectable and appears similar to the sample
shown in Figure 9.

FLO NODE NUMBERS SHOWN
HOT STREAMS
31 20 6

(

11 -|1 12

: ] —E B

Figure 8. Heat exchanger design output matrix.

nNIPmI-In OHOO

During the heat exchanger design program execution, the operator is given the
opportunity to bypass the graphics mode. This is a preferred choice when generating
several design variants where the basic heat exchanger layout would not be expected
to change with input requirements. At the conclusion of the heat exchanger programs
all pertinent data is automatically recorded in a disk file for use in the
subsequent weight/volume and off-design programs.

TOTAL AREA- 3116.181 FT2
HEAT EXCHANGED- 6857658 BTU/HR
%2 g ;-1552. ; g - 592.
FLOW="870. ------ > PO >FLOW- 870.
H--.2E+08 H-- .3E+08
HX 1
Tg 8 ;-1404. T( 7 g- 262.
Flow-"743.5°< <o Pul 743%
H—-- .2E+08 H--.3E+08

Figure 9. Typical heat exchanger design output screen.

Cost Estimating, ECON7.

The cost module is quite comprehensive being based on the requirements of
power production industry and includes many aspects not pertinent to naval
applications. It is arranged in a logical procedure and draws from an established

12 CARDIVNSWC-TR-82-93/47



data base. Several screens of data are presented from which the operator can glean
the information pertinent to his requirements.

The operator has the opportunity to modify several cost parameters, the first
of which is the cost of the cell components in dollars per square foot of cell
hardware. This is very important in light of the ever decreasing costs as
development continues. As the program executes many other screens are presented
with various options for the operator. A typical set of screens is shown in Figures
10 through 13.

The first screen, Figure 10, allows the operator to vary the process
contingency factors of selected cost items based of the maturity of the technology.
Suggested percentages are listed at the bottom. For this example, all items will be
assigned the default value for "small pilot plant data" of 20 percent.

ASSIGN CONTINGERCIES

FUEL CELL POWER SECTION $ 478,995, <
FUEL PROCESSING s 373,063.
CONDENSER EQUIPMENT ] 413.
HEAT EXCHANGERS ] 35,206.
GAS CLEANUP S 77,884,
POWER CONDITIONING ] 0.
LOX PRODUCTION S 0.
TURBINES & COMPRESSORS ] 126,423.
STEAM TURB. & GEN. S 0.
INSTRUMENT. & CONTROL S 136,498.
STRUCTURES & PLUMBING S 136,498.
GENERAL FACILITIES ] 68,795,

FROCESS CONTINGENCIES

NEW PROCESS - LIMITED DATA.... 40 2%
CONCEPT - BENCH SCALE DATA.... 30 2
SMALL PILOT PLANT DATA 2
FULL SCALE PLANT OPERA’ b4
COMMERCIALIZED......ocouuuonn. 0 2
ASSIGN PROCESS CONTINGERCY 20 27 ANALYTIC POWER CONTINGENCIES

Figure 10. Example of process contingency cost screen.

After this is accomplished, a second screen is presented allowing the operator
to assign an overall project contingency. In this example, the default value for a
"preliminary” plant with a value of 15 percent will be accepted.

ASSIGN CONTINGENCIES
FUEL CELL POWER SECTION ] 478,995, § 574,794,
FUEL PROCESSING S 373,063. g 447,675,
CONDERSER EQUIPMENT ] 413, 413,
] 35,206. $ 35,206,
CLEANUP S 77,884, 8 77,884,
POWER CONDITIONING S 0. $ 0.
LCX FPRODUCTIOR S 0. 8 0.
TURBINES & COMPRESSORS S 126,423. 8 126, 423.
STEAM TURB. & GEN. S . 8 0.
INSTRUMENT. & ] 138,498, 8§ 136,498,
STRUCTURES & PLUMBING ] 138,4988. 8- 136,488,
GENERAL FACILITIES 8 68,785. S 68,795.
SIMPLIFIED DESCRIPTION......... 30 2
IMIRARY.....coovivennnnnnnse 15 2
DETAILED......ciivnvnnennnnnnns 10 %
FINALIZED.......0oivveeanncnnnns 5 2
ASSIGN FROJECT CONTINGENRCY 15 2?7

Figure 11. Example of project contingency cost screen.
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After all contingencies are assigned, a summary of the costs, Figure 12, is
displayed. The operator may extract selected data from this display, or the program
may be amended to allow automatic recording of the selected data in a data file.

CAPITAL COST CC+PROC CONT. CC+ALL CONT.

FUEL CELL POWER SECTION S 192.30 /KW § 230.76 /KW S§ 265.37 /KW
FUEL PROCESSING $ 149.77 /KW S8 178.73 /KXW S 206.68 /KW
CONDENSER EQUIPMENT S 0.17 /KW S 0.17 /KW S 0.19 /KW
HEAT EXCEANGERS S 14,13 /XKW S 14,13 /KW § 16.25 /KW
GAS CLEANUP S 31.27 /XW 8 31.27 /KXW § 33.86 /KW
POWER CONDITIONING S 0.00 /KW § 0.00 /KW S 0.00 /KW
LOX PRODUCTION S 0.00 /KW S 0.00 /KW S 0.00 /KW
TURBINES & COMPRESSORS S 50.75 /XxW § 50.75 /KW S 58.37 /XW
STEAM TURB. & GEN. S 0.00 /XW 8 0.00 /KXW S 0.00 /KW
INSTRUMENT. & CONTROL $ 34 .80 /XKW S 54.80 /KW S 63.02 /KW
STRUCTURES & PLUMBING S 54.80 /KW S 54 .80 /KW S 63.02 /KW
GENERAL FACILITIES S 27.62 /KW 8§ 27.62 /4 § 31.78 /KW

TOTAL S 575.61 /KW S 644.02 /KW § 740.63 /XKW

Figure 12. Example of the contingency cost summary screen.

Figure 13 is a representation of the cost summary screen on which all the
major cost categories are displayed. The cost module continues after this screen to
estimate the costs for industrial depreciation etc. which are not of use in our
investigations but must be executed to obtain a proper exit from the program.

PLANT COST SUMMARY
TOTAL PLANT CAPITAL $ 712.60 /KW
INSTALLATION COST 8 213.78 /KW
ENGR & HOME OFFICE S 21378 /KW
PROCESS CONTINGENCIES S 68.41 /KW
PROJECT CONTINGENCIES 8 117,15 /xW
TOTAL PLANT COST $1,325.73 /KW
TOTAL PLANT INVESTMENT $1,453.00 /XN

START UP COST
PREPAID ROYALTIES s 7.27 /i
ONE MONTH FIXED OPERATING COST S 4.20 /X
ONE MONTH VARIABLE OPERATING COST § 25.51 /G4
START UP COST $ 66.12 /XN
TOTAL CAPITAL REQUIREMENT $1,519.12 /104

Figure 13. Example of cost summary screen.
Determ e tem w and vo -Vo

This module is the culmination of the design efforts of the programs up to
this point. It is entered automatically at the conclusion of the ECON module. The
operator must first decide what packing factor to use. The default value, and the
one almost universally utilized in past studies, is 1.5. This value represents the
additional volume required for walkways, maintenance spaces, pipe bends and flanges,
and other possible contingencies. Figure 14 represents the first output data screen
in a series of four. It contains a summation of the system weight data.
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SYSTEM WEIGHT ANALYSIS
APPLICATION: 1.0 mW OPERATING TIME: 24.0 hrs
NET POWER: 2480.882 XW CELL TYPE: IEMFC
(TONS) FUEL CELL GAS TURBINE DIESEL ENGINE
(NO2FO) (NO2FO) (NO2FO)
POWER SECTION 2.0 25.3 26.4
INVERTER 0.1 N/A N/A
HEAT EXCEANGERS 1.0 N/A N/A
B.O.P. 5.9 N/A N/A
SUBTOT 8.0 25.3 24.4
SPECIFIC WI. lb/kw 8.1 22.9 22.1
FUEL 12.7 13.4 11.8
TOTAL 21.6 38.7 36.2
SPECIFIC WEIGHT (1b/kWh) 0.81 1.46 1.36

Figure 14.

The screen containing the system volume summary follows immediately and

appears as shown in Figure 15.

Example of system weight summary screen.

SYSTEM VOLUME ANALYSIS
APPLICATION: 1.0 mW OPERATING TIME: 24.0 hrs
NET POWER: 2490.882 KXW CELL TYPE: IEMFC
(FI3) FUEL CELL GAS TURBINE DIESEL ENGINE
(NO2FO) (NO2F0) (NO2FO)
POWER SECTION 140.7 1985.5 1878.2
INVERTER 10.6 N/A N/A
HEAT EXCHANGERS 68.5 N/A N/A
B.O.P. 180.8 N/A N/A
SUBTOTAL 602.4 1885.5 1878.2
SPECIFIC VOL. ft3/kw 0.24 0.80 0.75
FUEL 528.6 557.8 481.2
TOTAL 1131.0 2543.3 2368.4
SPECIFIC VOLUME (in3/kWh) 32.69 73.51 68.48

Figure 15.

Example of the system volume summary screen.

The next two screens give weight and volume details of the balance of plant.
Figure 16 shows the data display screen for the heat exchangers for the current
sample 2500kW sample fuel cell system. In the sample case only two heat exchangers
are required. In other cases, as many as nine heat exchangers are required and will
be displayed in a similar manner as those shown.

HEAT EXCHANGERS
AREA (ft2) WEIGHT (lbs) VOLUME (£t3)
HEAT EXCHANGER # 1 3116.2 1306.3 36.2
HEAT EXCHAKGER # 2 141.4 871.2 33.4
TOTAL 1- 2 2277.5 69.5
Figure 16. Example of heat exchanger weight and volume analysis.

The balance of plant detailed analysis, as shown in Figure 17, contains data
on the balance of plant including the reformer,shift converter, and desulfurizing

equipment.
technologies which use steam reforming.

15

The HDS refers to a hydrodesulfurizer unit which is required for some

It is not required for ATR operation.
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) © BALANCE OF PLANT i
AREA (ft2)  WEIGHT (lbs) VOLUME (ft3)
TOTAL 1- 0 0.0 0.0
REFORMER 3939.9 65.7
SHIFT CONVERTER 6646.9 7.6
EDS 0.0 0.0
ZNO BED 2607.2 35.5

Figure 17. Example of balance of plant weight and volume analysis.

The ZnO beds in this sample run are sized to continuously desulfurize fuel at
the maximum rate for the plant assuming a sulfur content of 0.5 percent. They
consist of two beds, one processing anode gases while the other in regenerated with
a small flow of air. The beds are reversed on a 24 hour cycle.

This is a considered a conservative estimate at this time. Inquiries are
being made in the field of new, more efficient adsorption media. More efficient
absorbers will lower the associated weight and volume. The new higher standards of
air quality are causing refineries to produce ever lower sulfur content in their
marketable fuels. By the time fuel cell power systems technology reaches mass
production capacity in a few years, these future fuels will also decrease the impact
on on-board sulfur removal equipment.

Off-Design Module Operation, DTRC7-0OD,

After the design of the fuel cell power system has been completed, the
operator may run the off-design module to obtain specific fuel capacities at various
loads. This is an independent program which must be run separately. It uses data
automatically filed during the running of the design modules. It is best to run
this module immediately following DTRC7-R5 so that there will be no question as to
the validity of the input data. Figure 18 shows an example of the set-up screen
displayed after a net power of 50 percent of full load (1250 kW) is requested.

IEMFC PLANT PERFORMANCE DATA

OVERALL EFFICIENCY 41.9 2

POWER :
NET 1250.0 kW CURRENT DENSITY A42.2 ast
GROSS 1376.4 kW CELL VOLTAGE 0.786 volts
FUEL CELL 1204.3 kW OPEN CIRCUIT (dH/nF) 1.227 volts
INVERTER 0.0 kW CELL AREA 3961.7 ft2
PARASITE 110.6 kW

UTILIZATION: HEAT:
FUEL 0.850
HYDROGEN 0.850 BURNER -4 .1E+06 btu/hr
OXYGENR 0.710

TEMPERATURE :
ANODE INLET 233.5 deg F
CATBODE INLET 231.4 deg F
CELL EXIT 238.0 deg F

Figure 18. Example of the set-up screen for off-design analysis.
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Differences in the data between the original design, Figure 6, and the off-
design data, Figure 18, are as follows:
the net power is exactly as requested, half of the full load or 1250 kW
the efficiency is higher, 41.9 percent compared to 37.7 percent
temperatures are reduced
cell voltage is higher due to a lower current density
oxygen utilization is increased while fuel utilization is held constant

® & o ¢ O

Figure 19 contains the summary of the output data from the off-design program
module. The most significant variable is the fuel rate given in pound moles per
hour (MPH). Using the average molecular weight of the fuel, 204.19 1b/1b mole for
diesel fuel, the specific fuel consumption versus load curve, Figure 1, can be
obtained.

OFF-DESIGN NET POWER 1250.00 KW
OFF-DESIGN GROSS POWER 1376.40 KW
OFF-DESIGN OVERALL EFFICIENCY 0.42

DESIGN OVERALL EFFICIENCY 0.38
MECHANICAL EFFICIENCY 0.81

CURRENT DENSITY 442,17 ASF
CELL VOLTAGE 0.79 VOLTS
TOTAL AREA 3861.72 SQ FT
MOLECULAR WT OF FUEL 204.19 LB/LBMOL
FUEL FLOW 2.73 MPH

FC STACK EFFICIENCY 0.64

FC THEORETICAL VOLTAGE 1.23 VOLTS
TAFEL SLOPE 0.06 VOLTS/DECADE
WASTE GATE 0.00

FUEL ADDITION 0.05 MPH

Figure 19. Example of the off-design data summary screen.

The datum referred to as "WASTE GATE" is a programming artifact to allow for
energy and material overflow during program operation and is somewhat analogous to a
gas by-pass of the stack during transient operation, eg. start-up, shut-down, and
load change. It has no meaning at steady-state conditions (Except possibly during
completely unloaded conditions).

As the load on a given fuel cell system is reduced the overall thermal
efficiency increases, and there is less energy available in the spent anolyte gas to
power the turbine. Therefore some fuel must bypass the stack and be mixed with the
spent anolyte gas ahead of the burner. The FUEL ADDITION variable refers to the
fraction of total fuel representative of the additional energy. This fuel is
included in the FUEL FLOW variable and is broken out in the table for analysis
purposes.

The TAFEL SLOPE is a variable used in computing the fuel cell polarization
curve. It is shown for analytic purposes only and is of limited use in the context
of this report.

3-D MODELING BY COMPUTER AIDED DESIGN

At the conclusion of the analytical design programs sufficient data is
available to produce three-dimensional models with an appropriate computer aided
design (CAD) program. The model shown in Figure 20 was produced using AutoCad"~
(release 12) from the data obtained during the sample design and analysis. The
model may be combined with other models such as that for a ship, to check the fit
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<000 kW Fuel Cell Power System

Fuel Cell Containment

Figure 20.
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3-dimensional model of the 2500 kW fuel cell power system.
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of components, or to aid in visualizing installations within allotted spaces with
the capability to readjust component positions for economy of space. 3-D modeling
also allows realistic comparisons of fuel cell systems with other electric power
plants.

CONCLUSIONS

The computer modeling programs available at the Annapolis Detachment,
Carderock Division,NSWC are extremely versatile and effective in determining the
design parameters for PEM, PAFC, and MCFC power systems up to 50 MW. It is very
probable that larger power systems can be analyzed without modification although
this has not been attempted to date. Although cell components for 10kW stacks have
been verified, the BOP of these small power systems, in the range of 10 kW and
below, may be suspect as scaling factors for such small equipment are sensitive to
unspecifiable form factors, such as the radiant heat losses from an unspecifiable
shape, and flow factors in piping which, in actuality, may have numerous acute bends
which are unpredictable or at least unspecified.

The programs and modules covered in the above description can be used to
obtain the following parametric data for the design of many fuel cell systems:
® Cell design active area
®- Stack design including the number of cells, weight, and volume
®  Balance of plant weight and volume including;
e reformer
-shift converter
condensers
-heat exchangers
sulfur adsorbers
pumps, blowers, and motors

The heat balance and heat exchanger analysis module is ideal for designing the
complex arrays required for realizing the fuel economy fuel cell technology permits.
This gives the designer the advantage of concentrating on the aspects of ubiquitous
fuel cell system design without having to dilute their efforts with tedious heat
balance and heat exchanger design.

The principal caveat revealed in this study is that no diesel fuel powered
fuel cell system has been built to date that can be used to validate the results of
the programs. Until this is accomplished, all the design data generated with these
modules must be considered as theoretical. Only the PAFC module has a been

validated against an industrial facsimile. A comparison of the design data from the . .

PAFC module run corresponded well with the design of the ONSI™ PC25, a commercially
available 200kW PAFC system using natural gas.
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RECOYMENDATIONS

Continuous updating of the existing modules to reflect the ever changing state
of the art in fuel cell development is strongly recommended. Examples of these
modifications are:

® addition of bottoming cycles to exploit all available energy

¢ updated data for heat exchanger designs and materials

® optimized heat balance routines for maximizing water recovery.

It is recommended that a contract to generate a design module specific to
solid oxide technology be initiated as soon as possible. This would enhance the
present effort in assessing and analyzing future systems incorporating this
promising technology.
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Example of PAFC design data for ship impact study

APPENDIX B:
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Example of MCFC design data for ship impact study

APPENDIX C
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Copies
1
3

INITIAL DISTRIBUTION

ONR 4524

NAVSEA

O03R17

06KRI2 (Dampier)
03Z (Graham)

Band Lavis and Association Inc.

(Goubault)

Analytic Power Corporation
(D.Bloomfield)

Arctic Energies
(W.Kumm)

25

Copies

B b e B DD e (N LN bt b b e

CENTER DISTRIBUTION

Code Name

80 Argiro
82 Doyle
824 Adamson
82458 Braun
824 Smith
824 Woerner
825

852

22 Ritter
214 Heidenrgi
3422.2 TIC(A)%=
3431 Office Services
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